
glucose_ts
Release 0.0.1

Christoph Lange

Mar 26, 2021

CONTENTS

1 Data Structures 1
1.1 Time-series Container . 1
1.2 Manipulating Time-series . 1

2 Models 3
2.1 Exponential Decay . 3
2.2 Logistic Growth . 4
2.3 Generalized Logistic Growth . 5

3 Extrapolation 7
3.1 Maximum Likelihood . 7
3.2 Maximum A Posteriori . 8

4 Purpose 11
4.1 Features . 12
4.2 Installation . 12
4.3 Contribute . 12
4.4 Support . 12

5 Indices and tables 13

Index 15

i

ii

CHAPTER

ONE

DATA STRUCTURES

As this package predominantly deals with time series we have the following main structure.

1.1 Time-series Container

The idea is to bundle all datapoints that were measures during one experiment.

class glucose_ts.data.GlucoseTS(points_in_time, voltages, real_concentration)
The data structure that represents one glucose sensor experiment.

Parameters

• points_in_time (np.array) – an array that represents the number of minutes from
the start of the experiment

• voltages (np.array) – an array of voltage numbers that correspond to the points in
time when the voltage was measured

• real_concentration (float) – the “real” concentration of the glucose compound
during the experiment

This data structure can be obtained from excel file that are produced in the lab:

glucose_ts.data.read_glucose_ts(path)
Reads an exel file to obtain all relevant values for a Glucose time-series.

Parameters path (str) – a path to a respective exel file

Returns a glucose time-series

Return type glucose_ts.data.GlucoseTS

1.2 Manipulating Time-series

One common operation we need for making predictions is to cut the time-series.

glucose_ts.data.cut_time_series(glucose_ts, cutoff_time)
Creates a subset of a glucose time-series by cutting it off after a certain point in time.

Parameters

• glucose_ts (glucose_ts.data.GlucoseTS) – the glucose time-series to create a
cut-off from

• cutoff_time (float) – the point in time until we want to keep the time-series

1

glucose_ts, Release 0.0.1

Returns a glucose time-series

Return type glucose_ts.data.GlucoseTS

2 Chapter 1. Data Structures

CHAPTER

TWO

MODELS

The package contains different models to capture the voltage signal of the glucose sensor over time. The types of
models that are included in the package right now are the following.

Table of Contents

• Models

– Exponential Decay

– Logistic Growth

– Generalized Logistic Growth

2.1 Exponential Decay

The model behind exponential decay is

𝑉 (𝑡) = 𝐵 +𝐷 exp(−𝜆𝑡)

The three parameters are represented in the named tuple

class glucose_ts.models.exponential_decay.ExpDParameter(A, K, B)
The parameter container has all three parameters needed to specify an exponential decay model.

Parameters

• A (float) – the upper asymptote

• K (float) – the lower asymptote, for special cases the carrying capacity

• B (float) – the growth rate that describles the speed of decay

In order to learn the parameters that are a good fit to your training data we use the following estimator.

class glucose_ts.models.ExponentialDecay(exp_d_params=None, gaussian_priors=None,
variance=None)

This Estimator learns the paramters of an exponential decay model. It provides the classic maximum likelihood
approach as well as the Bayesian approach maximum posterior.

Moreover it implements the interface of a scikit-learn estimator.

fit(time, labels)
Fits a exponential decay model to training data.

Parameters

3

https://en.wikipedia.org/wiki/Exponential_decay
https://scikit-learn.org/stable/developers/develop.html

glucose_ts, Release 0.0.1

• time – points in time or the independent variable here

• labels – voltage measurements or the dependent variable

Returns the trained exponential decay model

Return type ExponentialDecay

predict(time)
makes predictions by using the model internal parameters

Parameters time (numpy.array) – points in time we want to make predictions for

Returns the predictions

Return type numpy.array

time_derivative(time)
computes the derivative with respect to time using the model internal parameters

Parameters time (numpy.array) – points in time we want to get the derivative for

Returns the derivatives

Return type numpy.array

2.2 Logistic Growth

The family of function we refer to as logistic growth models is described by

𝑉 (𝑡) = 𝐴+
𝐾 −𝐴

1 + exp(−𝐵(𝑡−𝑀))

The four parameters are represented in the named tuple

class glucose_ts.models.logistic_decrease.LDParameter(A, K, B, M)
This data structure contains the four parameter that are needed to identify a logistic function. The notations are
identical with the Wikipedia artile with 𝜈 = 1, 𝑄 = 1 and 𝐶 = 1 being set to fixed values.

Please note that we are always dealing with decays in case of the glucose sensor. Therefore we role a lower and
upper asymptote is flipped.

Parameters

• A (float) – the upper asymptote

• K (float) – the lower asymptote, for the growth case it is the carrying capacity

• B (float) – the growth rate

• M (float) – the location parameter of the logistic curve

In order to learn the parameters that are a good fit to your training data we use the following estimator.

class glucose_ts.models.LogisticDecrease(parameter=None, gaussian_priors=None,
std=None, time_horizon=None)

The Estimator that learns the paramters of a logistic growth model. You can use it for classic maximum likeli-
hood and a Baysian approach.

fit(time, labels)
Finds the logistic growth model parameters that fit the training data

Parameters

• time (np.array) – points in time or the independent variable in this case

4 Chapter 2. Models

https://en.wikipedia.org/wiki/Generalised_logistic_function

glucose_ts, Release 0.0.1

• labels (np.array) – voltage measurements or the dependent variable

Returns the trained generalized logistic model

Return type GeneralizedLogisticGrowth

predict(time)
makes predictions for all points in time by using the model internal parameters

Parameters time (numpy.array) – points in time we want to make predictions for

Returns the predictions

Return type numpy.array

time_derivative(time)
computes the derivative with respect to time using the model internal parameters

Parameters time (numpy.array) – all the points in time we want to get the derivative for

Returns the derivative values

Return type numpy.array

2.3 Generalized Logistic Growth

The formula behind the generalized exponential growth is very similar to the last one.

𝑉 (𝑡) = 𝐴+
𝐾 −𝐴

(1 + exp(−𝐵(𝑡−𝑀))
1
𝜈

The Logistic Growth is a special case of this model for 𝜈 = 1 which breaks the symmetry of the curve. The five
parameter that are needed to characterize one specific growth curve are stored in the following namedtuple:

class glucose_ts.models.generalized_logistics.GLParameter(A, K, B, nu, M)
The data structure represents all parameters that are needed for a generalized logistic function. The notations
are identical with the Wikipedia artile with 𝑄 = 1 and 𝐶 = 1 being set to fixed values. Please note that we
are always dealing with decays in case of the glucose sensor. Therefore we role a lower and upper asymptote is
flipped.

Parameters

• A (float) – the upper asymptote

• K (float) – the lower asymptote, for special cases the carrying capacity

• B (float) – the growth rate

• nu (float) – exponent for approximating the growth change

• M (float) – the location parameter of the logistic curve

So learn a specific parameter set from training data we use the following estimator.

class glucose_ts.models.GeneralizedLogisticGrowth(parameter=None, gaus-
sian_priors=None,
std_model=None,
time_horizon=None)

The Estimator that learns the paramters of a generalized logistic growth model. It provides the classic maximum
likelihood approach as well as the Bayesian approach maximum posterior.

fit(time, labels)
Fits a generalized logistic model to data.

2.3. Generalized Logistic Growth 5

https://en.wikipedia.org/wiki/Generalised_logistic_function

glucose_ts, Release 0.0.1

Parameters

• time (np.array) – points in time or the independent variable here

• labels (np.array) – voltage measurements or the dependent variable

Returns the trained generalized logistic model

Return type GeneralizedLogisticGrowth

predict(time)
makes predictions by using the model internal parameters

Parameters time (numpy.array) – points in time we want to make predictions for

Returns the predictions

Return type numpy.array

time_derivative(time)
computes the derivative with respect to time using the model internal parameters

Parameters time (numpy.array) – points in time we want to get the derivative for

Returns the derivatives

Return type numpy.array

6 Chapter 2. Models

CHAPTER

THREE

EXTRAPOLATION

When we look at the whole time-series its rather easy to predict the final voltage of the time series, as you can observe
here.

The green curve is the actual measurements of the glucose sensor. The orange curve is a generalized logistics growth
model that is fitted to the sensor data.

3.1 Maximum Likelihood

When we make a cut-off after 3 minutes the fit of the model to the data becomes worse

7

glucose_ts, Release 0.0.1

3.2 Maximum A Posteriori

When we take gaussian priors into account, we improve the curve fit. In particular we want the lower asymptote to be
close to the final signal, as that is our prediction for the final voltage that correlate with the glucose concentration.

When we make a cut-off after 2 minutes the fit of the model to the data improves.

8 Chapter 3. Extrapolation

glucose_ts, Release 0.0.1

3.2. Maximum A Posteriori 9

glucose_ts, Release 0.0.1

10 Chapter 3. Extrapolation

CHAPTER

FOUR

PURPOSE

The python package glucose_ts will help you to measure glucose concentrations closer to real time. When you measure
a glucose concentration with a enzyme based sensor you normally have to wait for 5 - 10 minutes to get the glucose
concentration. This projects aims for telling you this value earlier.

The green curve is the actual measurements of the glucose sensor. The orange curve is a generalized logistics growth
model that is fitted to the sensor data. This model gets all the sensor measurements to fit a model. The idea would be
to get the final voltage much earlier.

To ease the usage this package tries to follow the guidelines of scikit-learn estimators https://scikit-learn.org/stable/
developers/develop.html. In practise the usage looks like this:

import glucose_ts

trained_model = glucose_ts.models.ExponentialDecay().fit(points_in_time, labels)
trained_model.predict(points_in_time)

11

https://scikit-learn.org/stable/developers/develop.html
https://scikit-learn.org/stable/developers/develop.html

glucose_ts, Release 0.0.1

4.1 Features

The package implements the following methods to explain and predict the glucose sensor voltage signal

• exponential decay

• logistic growth

• generalized logistic growth

4.2 Installation

Install the glucose package using pip by

cd glucose-prediction
pip install -e .

Here we assume that you want to install the package in editable mode, because you would like to contribute to it. This
package is not available on PyPI, it might be in the future, though.

4.3 Contribute

• Issue Tracker: https://git.tu-berlin.de/ch.lange/glucose-prediction/-/issues

• Source Code: https://git.tu-berlin.de/ch.lange/glucose-prediction

4.4 Support

If you encounter issues, please let us know.

12 Chapter 4. Purpose

https://git.tu-berlin.de/ch.lange/glucose-prediction/-/issues
https://git.tu-berlin.de/ch.lange/glucose-prediction

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

13

glucose_ts, Release 0.0.1

14 Chapter 5. Indices and tables

INDEX

C
cut_time_series() (in module glucose_ts.data), 1

E
ExpDParameter (class in glu-

cose_ts.models.exponential_decay), 3
ExponentialDecay (class in glucose_ts.models), 3

F
fit() (glucose_ts.models.ExponentialDecay method), 3
fit() (glucose_ts.models.GeneralizedLogisticGrowth

method), 5
fit() (glucose_ts.models.LogisticDecrease method), 4

G
GeneralizedLogisticGrowth (class in glu-

cose_ts.models), 5
GLParameter (class in glu-

cose_ts.models.generalized_logistics), 5
GlucoseTS (class in glucose_ts.data), 1

L
LDParameter (class in glu-

cose_ts.models.logistic_decrease), 4
LogisticDecrease (class in glucose_ts.models), 4

P
predict() (glucose_ts.models.ExponentialDecay

method), 4
predict() (glucose_ts.models.GeneralizedLogisticGrowth

method), 6
predict() (glucose_ts.models.LogisticDecrease

method), 5

R
read_glucose_ts() (in module glucose_ts.data), 1

T
time_derivative() (glu-

cose_ts.models.ExponentialDecay method),
4

time_derivative() (glu-
cose_ts.models.GeneralizedLogisticGrowth
method), 6

time_derivative() (glu-
cose_ts.models.LogisticDecrease method),
5

15

	Data Structures
	Time-series Container
	Manipulating Time-series

	Models
	Exponential Decay
	Logistic Growth
	Generalized Logistic Growth

	Extrapolation
	Maximum Likelihood
	Maximum A Posteriori

	Purpose
	Features
	Installation
	Contribute
	Support

	Indices and tables
	Index

